x^2+13.5^2=(3x)^2

Simple and best practice solution for x^2+13.5^2=(3x)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+13.5^2=(3x)^2 equation:



x^2+13.5^2=(3x)^2
We move all terms to the left:
x^2+13.5^2-((3x)^2)=0
determiningTheFunctionDomain x^2-3x^2+13.5^2=0
We add all the numbers together, and all the variables
-2x^2+182.25=0
a = -2; b = 0; c = +182.25;
Δ = b2-4ac
Δ = 02-4·(-2)·182.25
Δ = 1458
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1458}=\sqrt{729*2}=\sqrt{729}*\sqrt{2}=27\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-27\sqrt{2}}{2*-2}=\frac{0-27\sqrt{2}}{-4} =-\frac{27\sqrt{2}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+27\sqrt{2}}{2*-2}=\frac{0+27\sqrt{2}}{-4} =\frac{27\sqrt{2}}{-4} $

See similar equations:

| 7n-15=36 | | x^2+13.5^2=3x^2 | | 7n—15=36 | | 2/3x-2=4x+18 | | 10=√x^2+2x+65 | | -15=-3+3w | | 9x-51=8x-10 | | 4^x+4^(x-1)=80 | | -7n+-9=-30 | | 1/2(3x-17)=1/6(8x-10) | | X=x/3+12 | | -4.9t^2+3.8t=-10 | | (x/5)-7=6 | | -39=-7x+5(x-5) | | 2.26b=17.6 | | 7h-5=-9 | | (m/8)+5=5 | | (x/3)-16=-14 | | 3x+18.50-3x=18.50 | | 0=36x^2-478-2463 | | 2x2-x=2x-1 | | 0=45x^2-492x-2466 | | 1÷x-5=0 | | F(x)=π/x | | x2+3=x3-1 | | 10x-2=148 | | 5×+y=10 | | 20-3n=85 | | 6s=-60 | | 9u-6+7u=16 | | -71=36=4u-29 | | X+2x+(2+x)=26 |

Equations solver categories